?!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> 亚洲,另类,激情av在线播放,无码人妻熟妇av又粗又大

亚洲精品92内射,午夜福利院在线观看免费 ,亚洲av中文无码乱人伦在线视色,亚洲国产欧美国产综合在线,亚洲国产精品综合久久2007

?div class="header_top">
Java知识分n|?- L学习从此开始!    
SpringBoot+SpringSecurity+Vue+ElementPlus权限pȝ实战评 震撼发布        

最新Java全栈׃实战评(免费)

AI人工学习大礼?/h2>

IDEA怹Ȁz?/h2>

66套java实战评无套路领?/h2>

锋哥开始收Java学员啦!

Python学习路线?/h2>

锋哥开始收Java学员啦!
当前位置: 主页 > Java文 > 人工AI >

用于译֠增量学习的视觉{换器中的局部性保?PDF 下蝲


分n刎ͼ
旉:2025-05-20 10:24来源:http://sh6999.cn 作?转蝲  侉|举报
用于译֠增量学习的视觉{换器中的局部性保?
失效链接处理
用于译֠增量学习的视觉{换器中的局部性保?PDF 下蝲

 
 
相关截图Q?/strong>
 

主要内容Q?/strong>
 

Deep models are good at capturing the necessary features ofimages for various tasks. In the normal classification task, deepmodels refine features layer by layer to get a compact repre-sentation for each image to be distinguished by the classifier.However, in real-world situations, new concepts increase overtimeQand it is necessary to allow machine learning systemsto adapt to new knowledge while keeping the previouslylearned knowledge. Class Incremental Learning (CIL) is ascenario where new concepts incrementally emerge as newclasses. When applied to CILQcurrent deep models alwayssuffer from catastrophic forgeting [1]. Therefore , researchersaim to balance the model between stabiliry (ability to resistchanges) and plasticity (ability to adapt). Many models andtraining routines are designed to approach this goal. Most ofthem focus on convolutional architectures [2]-[4]. Recently,Vision Transformers [5](ViT) catch researchers' attention dueto their superior performance in image classification. Worksintroducing ViT into CIL mostly focus on the block design [6]and model expansion [7].



 


------分隔U?---------------------------
?!-- //底部模板 -->