?!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> 亚洲av永久无码精品一福利,亚洲成av人片久久

亚洲精品92内射,午夜福利院在线观看免费 ,亚洲av中文无码乱人伦在线视色,亚洲国产欧美国产综合在线,亚洲国产精品综合久久2007

?div class="header_top">
Java知识分n|?- L学习(fn)从此开始! (tng) (tng) (tng) (tng)
SpringBoot+SpringSecurity+Vue+ElementPlus权限pȝ实战评 震撼发布        

最新Java全栈׃实战评(免费)

AI人工学习(fn)大礼?/h2>

IDEA怹Ȁz?/h2>

66套java实战评无套路领?/h2>

锋哥开始收Java学员啦!

Python学习(fn)路线?/h2>

锋哥开始收Java学员啦!
当前位置: 主页 > Java文档 > 人工AI >

transformer论文集合 下蝲


分n刎ͼ(x)
旉:2025-05-26 09:57来源:http://sh6999.cn 作?转蝲  侉|举报
transformer论文集合
失效链接处理
transformer论文集合 下蝲

 
 
相关截图Q?/strong>
 

主要内容Q?/strong>
 

1 Introduction
Transformer has been the most widely used ar-
chitecture for machine translation (Vaswani et al.,
2017). Despite its strong performance, the decod-
ing of Transformer is inefficient as it adopts the
sequential auto-regressive factorization for its prob-
ability model (Figure 1a). Recent work such as
non-autoregressive transformer (NAT), aim to de-
code target tokens in parallel to speed up the gener-
ation (Gu et al., 2018). However, the vanilla NAT
still lags behind Transformer in the translation qual-
ity – with a gap about 7.0 BLEU score. NAT as-
sumes the conditional independence of the target
tokens given the source sentence. We suspect that
NAT’s conditional independence assumption pre-
vents learning word interdependency in the target
sentence. Notice that such word interdependency
is crucial, as the Transformer explicitly captures
that via decoding from left to right (Figure 1a).


 


------分隔U?---------------------------
?!-- //底部模板 -->