亚洲精品92内射,午夜福利院在线观看免费 ,亚洲av中文无码乱人伦在线视色,亚洲国产欧美国产综合在线,亚洲国产精品综合久久2007

?
Java知識分享網(wǎng) - 輕松學(xué)習(xí)從此開始!????

Java知識分享網(wǎng)

Java1234官方群25:java1234官方群17
Java1234官方群25:838462530
        
SpringBoot+SpringSecurity+Vue+ElementPlus權(quán)限系統(tǒng)實戰(zhàn)課程 震撼發(fā)布        

最新Java全棧就業(yè)實戰(zhàn)課程(免費)

AI人工智能學(xué)習(xí)大禮包

IDEA永久激活

66套java實戰(zhàn)課程無套路領(lǐng)取

鋒哥開始收J(rèn)ava學(xué)員啦!

Python學(xué)習(xí)路線圖

鋒哥開始收J(rèn)ava學(xué)員啦!
當(dāng)前位置: 主頁 > Java文檔 > 人工智能AI >

transformer論文集合 下載


分享到:
時間:2025-05-26 09:57來源:http://sh6999.cn 作者:轉(zhuǎn)載  侵權(quán)舉報
transformer論文集合
失效鏈接處理
transformer論文集合 下載

 
 
相關(guān)截圖:
 

主要內(nèi)容:
 

1 Introduction
Transformer has been the most widely used ar-
chitecture for machine translation (Vaswani et al.,
2017). Despite its strong performance, the decod-
ing of Transformer is inefficient as it adopts the
sequential auto-regressive factorization for its prob-
ability model (Figure 1a). Recent work such as
non-autoregressive transformer (NAT), aim to de-
code target tokens in parallel to speed up the gener-
ation (Gu et al., 2018). However, the vanilla NAT
still lags behind Transformer in the translation qual-
ity – with a gap about 7.0 BLEU score. NAT as-
sumes the conditional independence of the target
tokens given the source sentence. We suspect that
NAT’s conditional independence assumption pre-
vents learning word interdependency in the target
sentence. Notice that such word interdependency
is crucial, as the Transformer explicitly captures
that via decoding from left to right (Figure 1a).


 


------分隔線----------------------------
?
鋒哥公眾號


鋒哥微信


關(guān)注公眾號
【Java資料站】
回復(fù) 666
獲取 
66套java
從菜雞到大神
項目實戰(zhàn)課程

鋒哥推薦